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This paper deals with Hermite�Pade� polynomials in the case where the multiple
orthogonality condition is related to semiclassical functionals. The polynomials,
introduced in such a way, are a generalization of classical orthogonal polynomials
(Jacobi, Laguerre, Hermite, and Bessel polynomials). They satisfy a Rodrigues type
formula and an (s+2)-order differential equation, where s is the class of the semi-
classical functional. A special case of polynomials, multiple orthogonal with respect
to the semiclassical weight function w(x)=x:0(x&a):1 e#�x (a combination of the
classical weights of Jacobi and Bessel), is analyzed in order to obtain the strong
(Szego� type) asymptotics and the zero distribution. � 1997 Academic Press

1. INTRODUCTION

In the Introduction we present the basic notions, definitions, and
notation of the paper. We sketch the history and the present state of the
topic, and discuss the results obtained here.
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1.1. Classical Orthogonal Polynomials

Most of the properties which are known for various classical orthogonal
polynomials (OP) [Qn(x)]

| Qn(x) Qm(x) w(x) dx=kn$n, m (1)

follow from the fact that their weight functions w satisfy the Pearson
differential equation (see [7, 32]),

(,(z) w(z))$+�(z) w(z)=0, (2)

where

, # P2 , � # P1 , (3)

and PN stands for the set of polynomials of degree not greater than N. The
position of the singularities of the differential equation (2) leads to a
classification of the different types of classical weights, which are

(J) ,(z)=z(z&a), w(z)=z:0(z&a):1,

(L) ,(z)=z, w(z)=z: e;z,
(4)

(H) ,(z)=const., w(z)=e;z 2
,

(B) ,(z)=z2, w(z)=z:e#�z,

called Jacobi, Laguerre, Hermite, and Bessel weight functions, respectively.
Solutions of the differential equation (2) together with the condition for the
path of integration 1

,(z) w(z) z& |1=0, &=0, 1, 2, ... (5)

define an integral moment functional (see [20, 23])

(w, z&) =w&=|
1

z&w(z) dz. (6)

1.2. Semiclassical Moment Functionals of Class s

The notion of classical moment functionals (associated with classical
weights (4)) is generalized by omitting the restriction (3) on the degrees of
the polynomials ,, �. If

s=max[deg ,&2, deg �&1], (7)
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then the functional (6), defined by (2) and (5), is called semiclassical of
class s (see [19, 21, 22]). Class s=0 corresponds to the classical case, and
class s>0 to the semiclassical case. During the past decade, the general
theory of integral representations of semiclassical functionals has been
developed in [13, 21, 22].

1.3. Semiclassical Orthogonal Polynomials

The study of orthogonal polynomials with respect to semiclassical
functionals (2), (7), (5), and (6), started more than a hundred years ago
with the work of Laguerre [17]. In spite of its long history and a number
of powerful modern results (see, for example [18, 24, 26]) one cannot say
that the theory of semiclassical OP enjoys the same level of development
and completeness as the theory of classical polynomials.

The problem is that semiclassical OP do not possess many of the
remarkable properties which satisfy classical OP. Among such properties
are the existence of Rodrigues type formulae and a simple, exact expression
(in terms of polynomials ,(z) and �(z) only) for the coefficients of the
differential and recurrence equations.

Also, concerning semiclassical OP, there exists some sort of ``classifica-
tion'' problem. As a matter of fact, it has been proven in [4, 21, 22] that
the space of solutions of the problem (2), (7), and (5) has dimension s+1,
which means that for each solution, w(z), of the differential equation (2),
there exist s+1 homotopically different classes of paths of integration
[#j]s+1

j=1 , satisfying (5), such that pairs [w(z), #j]s+1
j=1 generate, by means of

(6), (s+1) linearly independent moment sequences.
Because of the nonlinearity of the construction of OP with respect to the

weight, the properties of the OP with respect to the moment functional
(w, p)=�s+1

i=1 *i �#i
p(z) w(z) dz cannot be deduced from the properties of

the OP with respect to (wi , p) =�#i
p(z) w(z) dz, i=1, ..., s+1. The

simplest example: let a1 , a2 , and a3 be three non-colinear points of the
complex plane, and w(z)#const. It is comparatively easy to get properties
of ``canonical'' polynomials orthogonal with respect to w(z) placed on the
arcs joining two points [a1 , a2] and [a1 , a3]. But, properties of the
polynomials orthogonal with respect to w(z) placed on the curve, joining
three points [a1 , a2 , a3], require more sophisticated analysis (see [11, 26])
and have no connection with the properties of canonical OP.

1.4. Semiclassical Multiple Orthogonal Polynomials (Definition)

In this paper, to avoid a consideration of s+1 sequences of polynomials
orthogonal with respect to s+1 linearly independent semiclassical func-
tionals [w(z), #j]s+1

j=1 , we introduce a sequence of polynomials which is
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connected with the entire set of [w(z), #j]s+1
j=1 . To do this, we consider

Hermite�Pade� (H�P) approximants for the set of functions

ŵ#j
(z)=|

#j

w(!)
!&z

d!, j=1, 2, ..., s+1. (8)

There are several general constructions of H�P approximants (see
[3, 25, 27].

In this paper we consider a special case of H�P approximants, called
simultaneous rational approximants (see [3]). By definition, a vector of
rational functions

\ Pn, 1(z)
Qn(s+1)(z)

,
Pn, 2(z)

Qn(s+1)(z)
, ...,

Pn, s+1(z)
Qn(s+1)(z)+ ,

Qn(s+1) # Pn(s+1) , Pn, j # Pn , j=1, ..., s+1, (9)

is called a simultaneous H�P rational approximant of multi-index (n, ..., n)
for the vector of functions (ŵ#1

(z), ..., ŵ#s+1
(z)) if

Qn(s+1)(z) ŵ#j
(z)&Pn, j (z)=O(z&n&1), |z| � �, j=1, ..., s+1. (10)

The common denominators Qn(s+1) of simultaneous H�P rational approx-
imants (9) possess a property of multiple (or simultaneous) orthogonality
(see [3]):

|
#j

Qn(s+1)(z) z&w(z) dz=0, &=0, ..., n&1, j=1, 2, ..., s+1. (11)

Definition 1.1. The sequence of polynomials [Qn(s+1)(z)]�
n=0, Qn(s+1) #

Pn(s+1) , contains semiclassical multiple orthogonal polynomials (M-OP) of
index (n, ..., n) if they satisfy the (s+1) sets of orthogonality relations (11)
with respect to the semiclassical weight function w(z) (2), (7), placed on
(s+1) different curves [#j]s+1

j=1 which satisfy (5) and such that (wi , p) =
�#i

p(z) w(z) dz are s+1 linearly independent moment functionals.

If s=0, then semiclassical M-OP become classical OP (Jacobi, Laguerre,
Hermite, and Bessel).

1.5. Semiclassical M-OP (General Properties and Classification)

In our paper, we study formal and analytic properties of semiclassical
M-OP. Like semiclassical polynomials of usual orthogonality, their partners
of multiple orthogonality inherit many remarkable properties of classical
orthogonal polyomials.
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In Section 2 we prove that semiclassical M-OP satisfy a Rodrigues type
formula (Theorem 2.1) and a differential equation of order (s+2) whose
coefficients are easily represented by the coefficients of the Pearson
equation (2). We consider here the case s=1.

In this case, there are seven semiclassical weights, which are classified by
the position of the singularities of the Pearson equation (2):

(J�J) ,(z)=z(z&a1)(z&a2), w(z)=z:0(z&a1):1 (z&a2):2, (a)

(J�B) ,(z)=z2(z&a), w(z)=z:0(z&a):1 e#�z, (b)

(B�B) ,(z)=z3, w(z)=z: exp {#1

z2+
#2

z = , (c)

(J�L) ,(z)=z(z&a), w(z)=z:0(z&a):1 e;z (d)

(B�L) ,(z)=z2, w(z)=z:e;ze#�z, (e)

(L�H) ,(z)=z, w(z)=z: exp[;1z2+;2z], (f )

(H�H) ,(z)=const., w(z)=exp[;1z3+;2z2+;3z]. (g)

(12)

Combined with appropriate paths of integration #1 and #2 , satisfying (5),
they give rise to linear independent semiclassical functionals (class s=1)
and corresponding sequences of multiple orthogonal polynomials which, by
analogy with the classical case, we call Jacobi�Jacobi (J�J) polynomials,
Jacobi�Bessel polynomials (J�B), and so on.

1.6. Examples of Semiclassical M-OP

A special case of J�J polynomials (w(z)=const., #1=[&1, 0],
#2=[0, 1]) was first introduced by Appell [2] in 1901 in connection with
a generalization of the Rodrigues formula for Legendre polynomials.
Properties of Appell polynomials and some other polynomials generated by
a generalized Rodrigues formula have also been investigated in [1, 8, 10,
14]. At the time of the study of these polynomials, their property of
multiple orthogonality was not emphasized.

Recently, in connection with the general theory of convergence of H�P
approximants and asymptotics of H�P polynomials, some results concerning
M-OP with weights from (12) have been obtained (see [9, 27]). In 1979,
Kalyagin (see [15]) proved formulae of strong (Szego� type) asymptotics
for the special case of J�J polynomials: w(x) as in (12(a)) with a1=&a2=a,
#1=[&a, 0], #2=[0, a] (see also [16]). Sorokin studied formal and
analytic properties (including strong asymptotics) for J�L (case a<0,
;<0), L�H and H�H polynomials (see [28�31]).
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1.7. Asymptotics and Zero Distribution of Jacobi�Bessel Polynomials

In Section 3, we study the J�B polynomials in more detail. This type of
semiclassical M-OP has not been studied before.

These polynomials [Q2n], Q2n # P2n are multiple orthogonal (11) with
respect to the weight function (see 12(b))

w(z)=z:0(z&a):1 e#�z, R:1>&1, #{0, (13)

taken on the two canonical paths, which are (see Fig. 1) the following:

v #1 is a Jordan arc, leaving the origin from the side of the half-plane
[z : R(#�z)<0] and ending at the point a.

v #2 is a Jordan curve, leaving the zero point from the side of half-
plane [z : R(#�z)<0], turning around zero and ending at the zero point
again from the side of the half-plane [z : R(#�z)<0].

If a>0, and #<0, then #1 becomes the interval [0, a] and #2 the circum-
ference around zero connected with the origin by the cut along the segment
of the positive semiaxis. (If :0 and :1 are integers then #2 is only the
circumference around zero.)

So, the polynomial Q2n , deg Q2n=2n, with respect to the weight (13)
satisfies n orthogonality relations along the curve #1 (like Jacobi polynomials)

|
#1

Q2n(z) z&w(z) dz=0, &=0, 1, ..., n&1,

and n other orthogonality relations along #2 (like Bessel polynomials)

|
#2

Q2n(z) z&w(z) dz=0, &=0, 1, ..., n&1.

Figure 1
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The aim of Section 3 is to describe the asymptotic behaviour of the poly-
nomials [Q2n], when n � �, and also their zero distribution. We start with
the representation of the generating function for J�B polynomials:

F(x, z)= :
�

n=0

Q2n(x)
n !

1
zn+1. (14)

In order to investigate the asymptotics of the polynomials [Q2n], we use
the Darboux method (see [25, 32]). This method is based on the study of
the singularities in the complex z-plane for the generating function F(x, z).
The behaviour of the singularities on the boundary of the largest disk of
holomorphy of F(x, z) describes the limit of the coefficients of the power
expansion (14), i.e., asymptotics of the polynomials [Q2n] when n � �.
We summarize the investigation of the generating function and its singular
points in Theorems 3.1 and 3.5. Then, we deduce, from these theorems the
asymptotic behaviour of the polynomials [Q2n] in the whole complex
plane (Theorem 3.4).

Finally, we apply the formula obtained for the strong (Szego� type)
asymptotics of the J�B polynomials to the investigation of their zero
distribution. A conclusion that can be drawn from the investigation is that
about half of the zeros of the polynomial Q2n(x) (for n large enough) are
concentrated on the interval [ 1

9a, a] (see Theorem 3.5); the rest of the
zeros tend to the origin when n � �.

Moreover, if we denote Q2n=kn >2n
&=1 (x&x&, 2n)=kn qn, 1(x) qn, 2(x),

where qn, 1=>Nn
&=1 (x&x&, 2n) is the part of the polynomials corresponding

to the zeros concentrated on the interval [ 1
9a, a], then the zero counting

measure of the polynomials qn, 1 ,

&n :=&[qn, 1] :=
1
n

:
Nn

&=1

$(x&x&, 2n), (15)

has a weak limit (n � �)

&n *� &.

Here & is the positive probability measure on [0, a], which is the equi-
librium measure with respect to the logarithmic potential in the presence of
the external field generated by a unit charge placed at the origin.

In comparison with Jacobi polynomials (w(z)=z:0(z&a):1, #=[0, a])
whose zeros are dense on the interval [0, a] and asymptotically distributed
according to the equilibrium measure from logarithmic potential theory
(without any external field), the limit of the zero counting measure (15) &
has support [a�9, a]. This means that the part qn, 2 of the polynomials Q2n ,
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whose zeros tend to the origin (we could call it the ``Bessel part'' of the J�B
polynomial), creates an external field which pushes the zeros of qn, 1 (the
``Jacobi part'' of the J�B polynomial) out of the subinterval [0, a�9]/
[0, a] (their natural home place). Such an effect, called ``push of the zeros,''
is rather common for the general Hermite�Pade� polynomials (see [12, 27]).

1.8. Conclusion

Summarizing, we would like to mention that the notion of multiple
orthogonality (in comparison with ``usual'' orthogonality) seems to be very
appropriate for the generalization of classical OP. The semiclassical M-OP
are easily classified; they reflect the multidimensionality features of the set
of semiclassical moment functionals of class s. The semiclassical M-OP
inherit most of the remarkable properties of classical OP. As a conse-
quence, the powerful tools which have been created for the treatment of
classical OP may be used (after adaptation) for an analysis of semiclassical
M-OP. This gives the opportunity for the theory of semiclassical M-OP to
develop as far as the theory of classical OP. At the same time, the semi-
classical M-OP show new interesting phenomena which have not occurred
in the theory of classical OP. They present a new set of special functions
which is very important in several applications.

2. DIFFERENTIAL PROPERTIES OF SEMICLASSICAL MULTIPLE
ORTHOGONAL POLYNOMIALS OF CLASS s=1

In this section, we prove the Rodrigues type formula and derive a
differential equation for general semiclassical M-OP of class s=1. As
mentioned in the Introduction, the polynomials Q2n # P2n satisfy the
multiple orthogonal relations

{|#1

Q2n(z) z&w(z) dz=0

|
#2

Q2n(z) z&w(z) dz=0

&=0, 1, ..., n&1, (16)

with respect to the canonical integral representation [w(z), #1 , #2] of the
semiclassical functional of the class s=1, i.e., (see (2), (7), and (5)),

(i) (,(z) w(z))$+�(z) w(z)=0

(ii) max[deg [,]&2, deg [�]&1]=1 (17)

(iii) ,(z) w(z) z& | #1, 2
=0, &=0, 1, 2, ... .
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2.1. Rodrigues Type Formulas

Theorem 2.1. Let [Q2n]�
n=0 be a sequence of semiclassical M-OP (class

s=1) with index (n, n) (i.e., (16), and (17) hold ) Then

Q2n(z)=
1

w(z)
Dn[,n(z) w(z)], (18)

where D=d�dz.

Proof. First, we prove that the expression on the righ-hand side of (18)
is a polynomial in P2n . It is easy to check by induction that (1�w) Dk[,nw]
is a polynomial for any k=0, 1, 2, ..., n. We have from (17i) for k=1,

D[,nw]=D[(,w) ,n&1]=[&�+(n&1) ,$] ,n&1w=: bn, 1,n&1w,

where

bn, 1(z)=&�(z)+(n&1) ,$(z)

is a polynomial of degree at most 2 (see (17ii)). Introducing recursively a
sequence of polynomials

bn, k(z)=b$n, k&1(z) ,(z)+bn, k&1(z) bn&k+1, 1(z), k=2, 3, ..., n

(bn, k # P2k), we have

Dk[,nw]=bn, k,n&kw. (19)

Indeed, using induction, we have

Dk[,nw]=D[(bn, k&1w,) ,n&k]=(b$n, k&1 ,+bn, k&1 bn&k+1, 1) ,n&kw.

So, the polynomials on the right-hand of (18) belong to P2n .
Second, we prove that the polynomials on the right-hand side of (18)

satisfy multiple orthogonal relations (16). For j=1, 2 and 0�&�n&1 we
have

|
#j

Dn[,n(z) w(z)] z& dz

=z& Dn&1[,n(z) w(z)]| #j
&& |

#j

Dn&1[,n(z) w(z)] z&&1 dz.

125PROPERTIES OF JACOBI�BESSEL POLYNOMIALS



File: 640J 307410 . By:DS . Date:25:06:97 . Time:10:56 LOP8M. V8.0. Page 01:01
Codes: 2179 Signs: 857 . Length: 45 pic 0 pts, 190 mm

Taking into account (19) and (17iii), we continue integrating by parts
(&&1) times

|
#j

Dn[,n(z) w(z)] z& dz=(&1)& &! |
#j

Dn&&[,n(z) w(z)] dz

=(&1)& &! Dn&&&1[,nw]| #j

=(&1)& &! bn, n&(&+1)(z) ,&+1(z) w(z)| #j
=0

2.2. The Differential Equation of Third Order for Semiclassical M-OP of
Class s=1

Theorem 2.2. Let [Q2n]�
n=0 be a sequence of semiclassical M-OP (class

s=1) with index (n, n) (i.e., (16) and (17) hold). Then

,2(z) Q$$$2n(z)&2�(z) ,(z) Q"2n(z)+A1(z; n) Q$2n(z)+A2(z; n) Q2n(z)=0,

(20)

where

A1(z; n)=�(�+,$)&, \n(n&1)
2

,"&(n&1) �$+ ,

A2(z; n)=(�+,$) \n(n&1)
2

,"&n�$+
&, \n(n&1)(2n+5)

6
,$$$&

n(n+3)
2

�"+ . (21)

Proof. We introduce the function

yn=Dn[,nw].

Applying Leibnitz's rule in the expression Dn+3[,,nw] we first obtain

Dn+3[,n+1w]=,yn$$$+(n+3) ,$y"n
(n+3)(n+2)

2
,"y$n

+,$$$
(n+3)(n+2)(n+1)

6
yn . (22)

On the other hand,

Dn+3[,n+1w]=Dn+2[n,n&1,$(,w)&,n�w]=Dn+2[(n,$&�) ,nw].
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Again, using Leibnitz's rule, we deduce that the expression above is equal to

(n,$&�) y"n+(n+2)(n,"&�$) y$n+
(n+2)(n+1)

2
(n,$$$&�") yn . (23)

From (22) and (23) we have

,yn$$$+(3,$+�) y"n+(n+2) {3&n
2

,"+�$= y$n

+
(n+2)(n+1)

6
[(3&2n) ,$$$+3�"] yn=0. (24)

But yn=wQ2n , and substitution of y$n , y"n , and yn$$$ in (24) yields

,wQ$$$2n+[3,w$+(3,$+�) w] Q"2n

+{3,w"+2(3,$+�) w$+(n+2) \3&n
2

,"+�$+ w= Q$2n

+{,w$$$+(3,$+�) w"+(n+2) \3&n
2

,"+�$+ w$

+
(n+2)(n+1)

6
((3&2n) ,$$$+3�")w= Q2n=0. (25)

In order to eliminate the dependence on derivatives of w(z) from the
coefficients of (25), we apply the Pearson equation

,
w$
w

+�+,$=0. (26)

From D[,w]+�w=0 follows

D2[,w]+�$w+�w$=0,

but, using Leibnitz's rule, we have

D2[,w]=,"w+2,$w$+,w",

which gives us

,
w"
w

+(�+2,$)
w$
w

+(�$+,")=0. (27)
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By the same method, we obtain

,
w$$$
w

+(�+3,$)
w"
w

+(2�$+3,")
w$
w

+(�"+,$$$)=0. (28)

Substituting the relations (26)�(28) into Eq. (25), we have

,Q$$$2n&[3(�+,$)&(3,$+�)] Q"2n

&{3(�+2,$)
w$
w

+3(�$+,")&2(3,$+�)
w$
w

&(n+2) \3&n
2

,"+�$+= Q$2n

&{(2�$+3,")
w$
w

+(�"+,$$$)&(n+2) \3&n
2

,"+�$+ w$
w

&
(n+2)(n+1)

6
((3&2n) ,$$$+3�")= Q2n=0.

Therefore,

,Q$$$2n&2�Q"2n&{�
w$
w

+
n(n&1)

2
,"&(n&1) �$= Q$2n

+{\n(1&n)
2

,"+n�$+ w$
w

+
n(n+3)

2
�"&

n(n&1)(2n+5)
6

,$$$= Q2n=0.

Multiplying the above equation by , and using the Pearson equation
again, we obtain (20) and (21). K

The case (w(z)#1, ,(z)=z(z&1)(z&a) has been studied in [15]. In
this case w$�w=0 and

,$(z)=&�(z)=3z2&2(a+1) z+a

,"(z)=&�$(z)=6z&2(a+1)

,$$$(z)=&�"(z)=6.

If we substitute these expressions in (20) and (21), we have

,Q$$$2n&2�Q"2n+
(n+2)(n&1)

2
�$Q$2n&2n(n+1)(n+2) Q2n=0,

which is the same result as in [16, Theorem 1].
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3. ANALYTIC PROPERTIES OF JACOBI�BESSEL POLYNOMIALS

In this section we derive the strong asymptotics for J�B polynomials and
then apply this to the study of their zero distribution. As mentioned in the
Introduction, by J�B polynomials we mean the sequence of polynomials
[Q2n] which are multiple orthogonal (16) with respect to the weight
function

w(x)=x:0(x&a):1 e#�x, R:1>&1, #{0 (29)

(a, :0 , :1 , and # can be complex unless stated otherwise stated), placed on
the two canonical contours #1=[0, a] and #2 a Jordan curve around zero
(for details, see Introduction, Fig. 1).

From Theorem 1 above these polynomials are represented by means of
the Rodrigues formula

Q2n(x)=
1

w(x)
Dn[x2n+:0(x&a)n+:1 e#�x], (30)

which gives us, for the leading coefficients and the constant term of
Q2n=k2n, 2nx2n+ } } } +k0, 2n , the expressions

k2n, 2n=(:0+:1+3n)(:0+:1+3n&1) } } } (:0+:1+2n+1)
(31)

k0, 2n=(a#)n.

3.1. Generating Function for J�B Polynomials

We use the Darboux method for the study of the asymptotics of J�B
polynomials. This method is based on an analysis of the singularities on the
boundary of the largest holomorphy disk of the generating function for
polynomials [Q2n]:

F(z; x)= :
�

n=0

Q2n(x)
n!

1
zn+1. (32)

The method's main steps are:

1. the determination of the singularities for F(z) in the z-plane with
the largest modulus with respect to its dependence on x;

2. singularity type description and computation of the residues.

Then, applying the general theorem on the limit of the coefficients of a
converging power series, we will have the asymptotics for [Q2n].
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3.1.1. A Representation for the Generating Function F(z; x) by Means of an
Algebraic Function

Theorem 3.1. The generating function F(z; x), given in (32), for the
sequence of J�B polynomials [Q2n], given by (30) and (29), has the form

F(z; x)=
w(t

*
(z))

w(x)(z&3t2

*
(z)+2at

*
(z))

, (33)

where t
*

(z) is a branch of the algebraic function of the third order t(z);

t3&at2&zt+zx=0, (34)

such that t
*

(z) � x, when z � �.

Proof. We employ a standard technique. From Rodrigues' formula (30)
we have by means of the Cauchy integral (,(x)=x2(x&a))

Q2n(x)=
1

w(x)
Dn[,n(x) w(x)]=

n !
w(x)

1
2?i |1x

w(t) ,n(t)
(t&x)n+1 dt,

where 1x is a circle with its center at x and a sufficiently small radius
such that the origin and a do not belong to the disk 2x , bounded by
1x(1x=�(2x)) in the counterclockwise sense. The same branch for the
multivalued function w(x) is considered inside and outside the integral. For
|z| large enough,

} ,(t)
t&x

1
z }<1,

when t belongs to 1x , so the series

:
�

n=0
\ ,(t)

(t&x) z+
n

=
z(t&x)

z(t&x)&,(t)

converges uniformly for t # 1x . As a consequence

F(z; x)=
1

w(x)
1

2?i |
1x

w(t)
z(t&x)&t2(t&a)

dt; x{0, x{a. (35)

Since

z(t&x)&t2(t&a)=0 (36)
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if and only if

t=x+
t2(t&a)

z
, z{0,

and x+t2(t&a)�z is a contractive mapping for large enough values of |z|
which transforms the disk 2x into the same disk, then Eqs. (34) and (35)
have a unique root t

*
(z) within 1x and it is a simple root. By the residue

theorem, from (35) we derive (33).
Moreover, t

*
(z) tends to x when z tends to infinity and the other two

functions, t1(z) and t2(z) defined by Eq. (34), from Vieta's formulas, tend
to infinity when z tends to infinity. K

Remark. The algebraic function (34), which stands for F(z; x) in the
representation (33), is of order 3. In comparison with classical OP (see the
original version of the Darboux method for Jacobi polynomials [30]),
where the generating function is represented by a second-order algebraic
function, the case under consideration requires a more involved analysis.

3.1.2. Singularities of the Generating Function F(z; x) in the z-Plane

Theorem 3.2. The generating function F(z; x), given by (32) and (33),
for the sequence of J�B polynomials (30) and (29), has three singularities in
the z-plane, which (with respect to their dependence on x) are

z :=z0=0
(37)

z :=z\(x)= 1
8 (27x2&18ax&a2\(9x&a) - (9x&a)(x&a)).

Proof. The singularities of the algebraic function t
*

(z) are the solutions
of the system

{z(t&x)&t2(t&a)=0
z&3t2+2at=0.

(38)

Then

t(2t2&(3x+a) t+2ax)=0,

whence

t=0 or t=t\(x)= 1
4 (3x+a\- (9x&a)(x&a)). (39)
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As a consequence, using the second equation in (38), t
*

(z) has the
singularities (37). For z\(x) the branch of - (9x&a)(x&a) is defined by
the condition

- (9x&a)(x&a)=a - (9*&1)(*&1)

for x=*a, * a real number, and the last square root is positive for *>1.
Since t

*
(z)=0 or t

*
(z)=a is only possible when z=0, but x{0, x{a,

the generating function F(z; x) does not have any singularities different
from z=0, z=z\(x). K

3.1.3. Comparative Analysis of the Modulus for Singular Points of the
Generating Function F(z; x)

Now we determine, for each value of the parameter x, which singularities
of F(z; x) belong to the boundary of the largest disk of holomorphy of
F(z; x) with center at infinity (i.e., we determine which singularities have
the largest modulus).

Theorem 3.3. Let G be an analytic curve in the x-plane, described by the
roots of the equation

G :={x: 729 \x
a+

4

&972 \x
a+

3

+270 \x
a+

2

+4(1&4t)
x
a

+1=0, &2�t�2= ,

(40)

when the parameter t varies in [&2, 2] (i.e, G is the union of the interval
[ 1

9 a, a] and a loop L around zero, joined with the interval at the point 1
9 a

(see Fig. 2)):

G=[ 1
9a, a] _ L.

Let 0\ be a partition of the x-plane such that 0+ is a neighborhood of
infinity bounded by G and 0& is a neighborhood of zero bounded by L:

�(0+)=G, � # 0+ ,
(41)

�(0&)=L 0 # 0&.

Figure 2
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Then the moduli of the singularities (37) of the generating function F(z; x)
((32) and (33)) satisfy

|z+(x)|>|z&(x)|>0, x # 0+

|z&(x)|>|z+(x)|�0, x # 0&

|z+(x)|=|z&(x)|, x # G=[ 1
9a, a] _ L.

Proof. Let us consider the following set in the x-plane

[x : |z+(x)|=|z&(x)|]. (43)

Taking into account that (43) holds if and only if

z+(x)
z&(x)

+
z&(x)
z+(x)

=t, &2�t�2,

and that z+(x) and z&(x) are the roots of the equation

z2&
27x2&18ax&a2

4
z+a3x=0, (44)

by Vieta's formula we have

[x : |z+(x)|=|z&(x)|]={x :
z2

+(x)+z2
&(x)

z+(x) z&(x)
=t, &2�t�2= ,

which give us the Eq. (40) for G.
The discriminant of this equation is (t&2)2 (t+2)2 times a constant, so

we have four functions xi (t), i=1, 2, 3, 4, with branch points at t=\2.
For t=2 the equation has x(2)=a�9 as triple root and x(2)=a as a single
root. For t=&2 we have that x(&2)=(a�9)(3+2 - 3) and x(&2)=
(a�9)(3&2 - 3) are double roots. Since the Eq. (40) defining G has real
coefficients, and taking into account that

|z+(x)|=|z&(x)|, x # _a
9

, a& ,

we have for t # [&2, 2]

x1(t) # _a
9

(3+2 - 3), a& ,

x2(t) # _a
9

,
a
9

(3+2 - 3)& ,
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x3(t) is a Jordan arc joining a�9 and (a�9)(3&2 - 3), and x4(t) is symmetric
to x3(t) with respect to the straight line defined by a and the origin.

Then, G is formed by the segment [a�9, a] and by a loop L around the
origin (see Fig. 2).

Let 0\ be the domains defined in the statement of the theorem. Since

lim
x � �

z+(x)=�,

lim
x � �

z&(x)=0,

z+(0)=0,

z&(0){0, x # C,

it follows that (42) holds. K

3.1.4. An Explicit Representation for the Generating Function F(z; x) with
the Help of Cardano's Formula

The representation (33) for F(z; x) given by Theorem 3.1 can be
modified in the following form.

Theorem 3.4. The generating function F(z; x), given in (32) and (33) for
the sequence of J�B polynomials (30) and (29), has the form

F(z; x)=
w(t

*
(z))

w(x)
- 27

6i
d

*
(z)& g

*
(z)

z - (1&(z+(x))�z)(1&(z&(x))�z)
, (45)

where z\ are the non-zero singularities of F(z; x) given in (37), t
*

(z) is the
same as in (33), and d

*
(z) and g

*
(z) are the branches of the functions

g(z)=\2a3+(9a&27x)z

54z - z
+

i

- 27�\1&
z&(x)

z +\1&
z+(x)

z ++
1�3

,

(46)

d(z)=\2a3+(9a&27x)z

54z - z
&

i

- 27�\1&
z&(x)

z +\1&
z+(x)

z ++
1�3

,

such that

lim
z � �

g
*

(z)=&
i

- 3
, lim

z � �
d
*

(z)=
i

- 3
. (47)
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Proof. The discriminant of Eq. (34)

t3&at2&zt+xz=0

from the representation of F(z; x) (33) is

D=4z \z2&
27x2&18ax&a2

4
z+a3x+

=4z(z&z&(x))(z&z+(x)),

and, by Cardano's formula, the solutions are

tk(z)&
a
3

=- z \ gk(z)+
a2+3z
9zgk(z)+

=- z \dk(z)+
a2+3z
9zdk(z)+=- z(gk(z)+dk(z)),

where gk(z) and dk(z), for k=1, 2, V , are the different cubic roots of (46).
We also have

lim
z � �

gk(z)=\ i

- 27+
1�3

, lim
z � �

dk(z)=\ &i

- 27+
1�3

,

and since limz � � t
*

(z)=x (see (34))

t
*

(z)=
a
3

+- z (g
*

(z)+d
*

(z)), (48)

where the branches d
*

and g
*

satisfy (47) and the branch for - z is chosen
with the only condition that the outside and inside brackets are equal.

From (48) we obtain (45). K

3.1.5. Type of Singularities of the Generating Function F(z; x)

Theorem 3.5. The singularities z+(x), z&(x), and (37) of the generating
function F(z; x), given in (32), (33), and (45), are branch points of the second
order. In punctured neighborhoods =(z\) of these points, F(z; x) has the form

F(z; x)=
A(x)

- 1&(z+(x))�z
+o(1), z # =(z+),

(49)

F(z; x)=
B(x)

- 1&(z+(x))�z
+o(1), z # =(z&),
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where x � [0; a; a�9] and

A(x)=
w(t+(x))

w(x)
d

*
(z+)& g

*
(z+)

z+ - 1&(z&(x))�(z+(x))

- 3
2i

,

(50)

B(x)=
w(t&(x))

w(x)
d

*
(z&)& g

*
(z&)

z& - 1&(z+(x))�(z&(x))

- 3
2i

,

where t\(x) is defined by (39) and g
*

and d
*

by (46) and (47).

Proof. We assume x to belong to the line x=$a, $>1. Denoting

D*=\1&
z+(x)

z +\1&
z&(x)

z + ,

when z moves around z+(x), after one circuit, the function - D* changes
to &- D*. We describe the situation by - D* � &- D*. Then

g
*

(z) � cd
*

(z),

d
*

(z) � c2g
*

(z),

where c is a cubic root of the unity. We now determine the constant c.
Let us consider the curve J= consisting of the line (1�*) z+(x),

0<*<1&=, for some =>0, the circle

|z&z+(x)|=
=

1&=
|z+(x)|

traversed counterclockwise, and the line once more in the opposite
direction. When z goes through J=(x), the function g3

*
(z) describes a

Jordan arc, C=(x), beginning at i�- 27 and ending at &i�- 27.
Let C(x) be the limit curve when = tends to zero. For x=$a, $>1, the

curve C(x) lies in the half-plane R(z)<0 (we assume - z in the definition
of g3

*
(z) such that - a2!=a - ! and - !>0 for !>0) and the argument

of g3(z) increases by +?. Hence the new value of g
*

(z) at infinity is
(&i�- 3) e(?�3) i. So

&i

- 3
e(?�3) i=cd

*
(�)=c

i

- 3
,

which means that

c=&e(?�3) i.
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Then, after a circuit around z+(x), F(z; x) changes its value and after a
second circuit it returns to the original value.

For x=$a, $<(3&2 - 3)�9 (x is outside of the loop), the corresponding
value of c is &e(&?�3) i which means that z+(x) is a second order branch
point of F(z; x).

For x=$a, (3&2 - 3)�9<$< 1
9, z&(x) is not a singular point because

z=&a2�3 is a triple zero of g3(z) and after a circuit from infinity to infinity
around z&(x), the argument of g3(z) is increased by 3? and this means that

g
*

(z) � d
*

(z),

d
*

(z) � g
*

(z).

Moving x through the curves [x : |z\(x)|=const.] and using the continuity in
x of the function

1
2?i |

#

(g3(z))$
g3(z)

dz

for appropriate curves # from infinity to infinity, we obtain from the
behaviour of z\(x) when x=$a that z+(x) is a branch point of t

*
(z) when

x belongs to 0+ and z&(x) is not a branch point when x belongs to
0& _ L"[0]. In this domain, z&(x) is a branch point for the two other
branches of the third-order algebraic function t(z). Then z+(x) is the
singularity on the largest disk of holomorphy of F(z; x) when x belongs to
C"([a�9, a] _ [0]).

When x belongs to (a�9, a), taking into account that z\(x) are singular
points of t

*
(z) if and only if limz � z\

t
*

(z)=t\(x) (t\(x) is defined by
(39)), by the Schwarz reflection principle, we have that z+(x) is a singular
point if and only if z&(x) is a singular point. So z+(x) and z&(x) are
branch points; otherwise t

*
(z) would be a bounded holomorphic function

on C"[0]. Moreover, when z\(x) is a singular point,

lim
z � z\

(g
*

(z)&d
*

(z)){0,

which leads to (49). The expressions (50) for A(x) and B(x) are obtained
by taking the limits

A(x)= lim
z � z+

�1&
z+(x)

z
F(z; x),

B(x)= lim
z � z&

�1&
z&(x)

z
F(z; x). K
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3.2. Strong Asymptotics for J�B Polynomials

We use the following well-known result for the limit of the Taylor
coefficients (Darboux's method)

Let

f (z)= :
�

n=0

an zn

be holomorphic in the unit disk, which is its maximal disk of
holomorphy. Let there be k singular points of f (z) on the unit
circle, 1�wj , j=1, ..., k, and let these all be algebraic points. In
a punctured neighborhood of each point 1�wj , let f have an
expansion of the form

f (z)=b ( j)
0 (1&wjz)mj �pj+b ( j)

1 (1&wjz)(mj+1)�pj+ } } } ,

where mj # Z, pj # N, mj�pj � Z+ , b ( j)
0 {0, and the expansion is

carried out in powers of (1&wjz)1�pj. Then (as n � �)

an= :
k

j=1

b ( j)
0 \&mj �pj+n&1

n + wn
j (1+O(n&1�pj)). (51)

If an depends on a parameter x, then (51) holds uniformly in an
appropriate domain of variation of x.

(For the proof see [32, p. 206, 8.4].)

From the properties of the generating function F(z; x), studied in the
previous subsection (Theorems 3.2, 3.3, 3.5), we have

Theorem 3.6. For J�B polynomials (30) and (29), the following asymptotic
formulae hold (as n � �):

1.
1
n !

Q2n(x)=
A(x)

- 2?n
(z+(x))n+1 \1+O \ 1

- n++ , (52)

uniformly with respect to x on compact subsets of C"([a�9, a] _ [0]).

2.

1
n !

Q2n(x)=
1

- 2?n
[A(x)(z+(x))n+1+B(x)(z&(x))n+1] \1+O \ 1

- n++ ,

(53)

uniformly with respect to x on compact subsets of (a�9, a).
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Here z\(x) are as defined in (37) and A(x) and B(x) are as in (50).

In the following two corollaries, we derive the asymptotic formula for
[Q2n] when x belongs to the interval [a�9, a].

Corollary 3.1. Let :0 , :1 , and #�a be real numbers. Then for J�B
polynomials (30) and (29) the following asymptotic formula holds (as
n � �)

Q2n(x)
n !

=
- 27 a2n

6i - 2?n {W(*)
d

*
(a2z(*))& g

*
(a2z(*))

- 1&z(*)�z(*)
zn(*)

&W(*)
d

*
(a2z(*))& g

*
(a2z(*))

- 1&z(*)�z(*)
zn(*)=\1+O \ 1

- n++ , (54)

where x=*a, uniformly with respect to * on compact subsets of the interval
(1�9, 1), where g

*
and d

*
are defined in (46) and (47); z(*)=z+(x)�a2, and

W(*)=w(t
*

(z+(x)))�w(x).

Proof. Setting x=*a, 1�9<*<1, we have from (37)

z+(x)=
a2

8
(27*2&18*&1+i(9*&1) - (9*&1)(1&*))=: a2z(*), (55)

and z&(x)=a2 z(*). On the other hand, as it was shown in (39)

t
*

(z+(x))=
1
4

(3x+a+- (9x&a)(x&a))

=
a
4

(3*+1+i - (9*&1)(1&*))=: at(*), (56)

and t
*

(z&(x))=at(*). Moreover, for z=a2!, !>1, we have

g3(a2!)=
2+(9&27*) !

54! - !
+

i

- 27 �}1&
z(*)

! }
2

,

so, d 3(a2!)=g3(a2!) which means that d(a2!)=cg(a2!), where c is a cubic
root of unity. Taking into account that

lim
! � �

g(a2!)=&
i

- 3
, lim

! � �
d(a2!)=

i

- 3
,

then c=1 and d(a2!)=g(a2!) follows.
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Thus d(a2!)& g(a2!)=2i Ig(a2!), and by the Schwarz reflection principle

d(z&(x))& g(z&(x))=&d(z+(x))& g(z+(x)), x # _a
9

, a& , (57)

because z+(x) and z&(x) are symmetric points with respect to the straight
line z=a2!, !>1. Finally, it is clear that

�1&
z+(x)
z&(x)

=�1&
z&(x)
z+(x)

, x # _a
9

, a& ,

and by (56) and by the definition of w(x) (29),

W(*) :=
w(t

*
(z+(x)))
w(x)

=\t(*)
* +

:0

\1&t(*)
1&* +

:1

exp _#
a \

t(*)&1
* +& , (58)

where x:0(1&x):1=|x|:0 |1&x|:1 for 0<x<1. Then, for :0 and :1 real
numbers and # such that #�a is real too, we obtain

w(t
*

(z&(x)))
w(x)

=W(*).

Hence, for :0 , :1 , and #�a real numbers, (55), (56), (57), and (58) lead
to (54).

Setting

D(*)=: W(*)
d

*
(a2z(*))& g

*
(a2z(*))

- 1&z(*)�z(*)
, (59)

the expression (51) in Corollary 3.1 can be rewritten as follows:

Corollary 3.2. With the assumptions and the conditions of Corollary
3.1 we have

Q2n(x)
n !

=
- 3 a2n

- 2?n
|z(*)|n |D(*)| sin[n arg[z(*)]

+arg[D(*)]] \1+O \ 1

- n++ , (60)

x=*a, uniformly with respect to * on compact subsets of (1�9, 1), where

arg[z(*)]=?&
1
2 |

*

1�9

9t&1

t - (9t&1)(1&t)
dt,
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and

arg[D(*)]=&
1
4 |

*

1�9 \6(:0+:1+1) t2

&\2:0+5
#
a+ t+ dt

t2
- (9t&1)(1&t)

+A, (61)

and A is a constant different from ? and &?.

Proof. The representation (60) immediately follows from the definition
(59) and (54). Concerning the expression for arg D[*], after some calcula-
tion we obtain

arg D(*)=
:0

2 |
*

1�9

1&3t

t - (9t&1)(1&t)
dt&

3
2

:1 |
*

1�9

dt

- (9t&1)(1&t)

&
#
a |

*

1�9

1&5t

4t2
- (9t&1)(1&t)

dt+arg
d

*
(a2z(*))&g

*
(a2z(*))

- 1&z(*)�z(*)
.

Moreover,

d
*

(a2z(*))& g
*

(a2z(*))

- 1&z(*)�z(*)
=

d
*

(a2z(*))(1&c)

- 1&z(*)�z(*)
=

(2+(9&27*) z(*))1�3 (1&c)

- 2i - (9*&1)3 (1&*)
,

for some cubic root of 2+(9&27*) z(*), where c is a cubic root of unity
different from 1. From this expression we obtain

arg
d

*
(a2z(*))& g

*
(a2z(*))

- 1&z(*)�z(*)
=A&

3
2 |

*

1�9

dt

- (9t&1)(t&1)
,

where

A= lim
* � 1�9

arg(2+(9&27*) z(*))1�3&arg - i+arg(1&c),

which, as it is easily seen, is different from ? and &? for any root and for
any possible value of c. As a consequence we have (61). K

3.3. Asymptotics of the Zeros of J�B Polynomials

We can apply the formulae of the strong asymptotics (see Theorem 3.7
and corollaries) to locate the zeros [xj, 2n]2n

j=1 of the polynomials Q2n , as
n � �.
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First, we count the number of zeros on the interval [a�9, a], where the
polynomials oscillate.

Theorem 3.7. Let the exponents of the J�B weight function (29), w(x),
:0 , :1 , and #�a be real numbers. If k0 is an integer such that

(k0&1) ?<arg[D(*)]<k0?, (62)

where arg[D(*)] is given in (61), then for n large enough, the J�B
polynomial Q2n , (30), has n&k0 or n&k0+1 zeros on the segment (a�9, a).

Proof. From the asymptotic formula (60) we have that Q2n has a zero
on (a�9, a) if and only if

Hn, k(*) :=arg z(*)+
arg D(*)&k?

n

has a zero on (1�9, 1) for some integer number k. Moreover, for n large
enough, Hn, k(*) is a monotonic function.

Since Hn, k(1�9)=((n&k) ?+A)�n and (k0&k&1) ?�n<Hn, k(1)<
(k0&k) ?�n, from (62) it is obvious that

k<k0 O Hn, k(1�9)>0,

Hn, k(1)>0 O Hn, k(*){0, 1�9<*<1.

k0<k<n O Hn, k(1�9)>(A+?)�n>0, Hn, k(1)<0;

thus Hn, k(*) has exactly one zero for 1�9<*<1:

k>n O Hn, k(1�9)<(A&?)�n<0,

Hn, k(1)<0 O Hn, k(*){0, 1�9<*<1.

Hence, Q2n(x) has n&k0 or n&k0+1 zeros on the segment [a�9, a].

Thus, about half of the zeros of the polynomials Q2n(x) are located on
the interval [a�9, a]. ``On the average'' the rest of the zeros tend to the
origin. Indeed, comparing the leading coefficient and the constant term of
the polynomials Q2n(x), (31), we have

`
2n

j=1

xj, 2n=
(a#)n

(:0+:1+3n)(:0+:1+3n&1) } } } (:0+:1+2n+1)
.
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As far as we know, n&k0 zeros lie on the interval [a�9, a] (where the
integer k0 does not depend on n), i.e.,

}a9 }
n&k0

� `
n&k0

j=1

|xj, 2n |�|a|n&k0 ;

therefore, the geometric mean of the rest of the zeros tends to the origin
with a rate O(1�n)

\ `
2n

j=n&k0+1

|xj, 2n |+
1�n

��
1
n

.

More precisely, n+k1(:, ;, #) zeros tend to the origin because z+(x) has a
simple zero at the origin and

1
2?i |

|x|==

(Q2n(x)�zn
+(x))$

Q2n(x)�zn
+(x)

dx=
1

2?i |
|x|==

A$(x)
A(x)

dx=k1(:, ;, #),

for large enough values of n.
Since the main term of the asymptotics for Q2n(x) is known (i.e.,

the algebraic function z(x), (44)), the potential theoretic description of the
limit of the zero distribution can be obtained: Let

&2n :=&[Q2n] :=
1
n

:
2n

j=1

$(x&xj, 2n) (63)

be the so-called zero counting measure of the polynomial

Q2n(x)=k2n; 2nq2n(x)=k2n, 2n `
2n

j=1

(x&xj, 2n).

We denote the logarithmic potential of the measure + by

V+=| ln
1

|x&t|
d+(t).

From (63), it follows that

V&2n
(x)=&

1
n

ln }Q2n(x)
k2n, 2n } . (64)

Theorem 3.6 gives us

1
n

ln |Q2n(x)|=ln |z\(x)|+
ln n !

n
+o(1), (65)
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uniformly for x belonging to compact sets of (a�9, a) or C"([a�9, a] _ [0]).
Combining (31) and (64) with (65) we have

V&2n
(x)=&ln |z\(x)|+ln 27

4 +o(1). (66)

If x # [a�9, a], then |z+(x)|=|z&(x)| and from the algebraic equation for
z(x), (44), it follows that

|z(x)| 2=|z+(x) z&(x)|=|a3x|.

Therefore, for x # (a�9, a), we have from (66)

2V&2n
(x)=ln

1
|x|

+ln
272

16 |a3|
+o(1). (67)

Next, we split the zero counting measure into two parts corresponding to
the zeros falling on the interval (a�9, a) and those outside of it:

&n, 1 :=
1
n

:
n&k0

j=1

$(x&xj, 2n),

and

&n, 2 :=
1
n

:
2n

n&k0+1

$(x&xj, 2n).

So, Eq. (67) can be rewritten as

2V&n, 1
(x)+2V&n, 2

(x)&ln
1

|x|
=ln

272

16 |a3|
+o(1), x # \a

9
, a+ .

Since n+k1 zeros corresponding to &n, 2 tend to the origin, the measure of
their distribution (zero counting measure) converges weakly to the Dirac
measure of mass one concentrated at the origin and

V&n, 2
(x) � ln

1
|x|

, n � �.

Therefore

2Vn, 1(x)+ln
1

|x|
=ln

272

16|a3|
+o(1), x # \a

9
, a+ .
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This means that the zero counting measure, on the interval [a�9, a],
converges to the equilibrium measure of the logarithmic potential in the
field of a unit mass located at the origin.
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